Incorporating spike-rate adaptation into a rate code in mathematical and biological neurons.
نویسندگان
چکیده
For a slowly varying stimulus, the simplest relationship between a neuron's input and output is a rate code, in which the spike rate is a unique function of the stimulus at that instant. In the case of spike-rate adaptation, there is no unique relationship between input and output, because the spike rate at any time depends both on the instantaneous stimulus and on prior spiking (the "history"). To improve the decoding of spike trains produced by neurons that show spike-rate adaptation, we developed a simple scheme that incorporates "history" into a rate code. We utilized this rate-history code successfully to decode spike trains produced by 1) mathematical models of a neuron in which the mechanism for adaptation (IAHP) is specified, and 2) the gastropyloric receptor (GPR2), a stretch-sensitive neuron in the stomatogastric nervous system of the crab Cancer borealis, that exhibits long-lasting adaptation of unknown origin. Moreover, when we modified the spike rate either mathematically in a model system or by applying neuromodulatory agents to the experimental system, we found that changes in the rate-history code could be related to the biophysical mechanisms responsible for altering the spiking.
منابع مشابه
Dynamics of Synaptic Transmission and Neural Code
In the light of the latest results concerning the synaptic paired pulse depression, facilitation [Thomson et al., 1993 a,b,c], its effects on long term potentiation (LTP) and depression (LTD) [Markram et al., 1996], and spike frequency adaptation, the question how the neurons communicate and what are meaningful signals in the neural information processing has to be reconsidered. Modeling these ...
متن کاملSpike firing allometry in avian intrapulmonary chemoreceptors: matching neural code to body size.
Biological rates in small animals are usually higher than those in large animals, yet the maximal rate of action potential (spike) generation in sensory neurons encoding rate functions is similar in all animals, due to the conserved genetics of voltage-gated ion channels. Therefore, sensory signals that vary at rates approaching maximal spike generation rate, as might occur in animals of dimini...
متن کاملSpeed-invariant encoding of looming object distance requires power law spike rate adaptation.
Neural representations of a moving object's distance and approach speed are essential for determining appropriate orienting responses, such as those observed in the localization behaviors of the weakly electric fish, Apteronotus leptorhynchus. We demonstrate that a power law form of spike rate adaptation transforms an electroreceptor afferent's response to "looming" object motion, effectively p...
متن کاملA firing-rate model of spike-frequency adaptation in sinusoidally-driven thalamocortical relay neurons
In a systematic study of thalamocortical relay neuron responses to sinusoidal current injection [J. Neurophysiol. 83 (1), 588], we found that the Fourier fundamental of tonic responses was regularly phase advanced during low temporal frequency stimulation (1/10 cycles at 0.1 Hz). We hypothesized that such phase advances of the Fourier fundamental response were due to a slow spike-frequency adap...
متن کاملLow-dimensional spike rate models derived from networks of adaptive integrate-and-fire neurons: Comparison and implementation
The spiking activity of single neurons can be well described by a nonlinear integrate-and-fire model that includes somatic adaptation. When exposed to fluctuating inputs sparsely coupled populations of these model neurons exhibit stochastic collective dynamics that can be effectively characterized using the Fokker-Planck equation. This approach, however, leads to a model with an infinite-dimens...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of neurophysiology
دوره 115 5 شماره
صفحات -
تاریخ انتشار 2016